AI Layer1深度解析:6大项目点燃DeAI沃土

AI Layer1研报:寻找链上DeAI的沃土

概述

近年来,OpenAI、Anthropic、Google、Meta等头部科技公司不断推动大语言模型(LLM)的飞速发展。LLM在各行各业展现出前所未有的能力,极大地拓展了人类的想象空间,甚至在部分场景下展现了替代人类劳动的潜力。然而,这些技术的核心却牢牢掌握在少数中心化科技巨头手中。凭借雄厚的资本和对高昂算力资源的把控,这些公司建立起了难以逾越的壁垒,使绝大多数开发者和创新团队难以与之抗衡。

同时,在AI快速演进的初期,社会舆论往往聚焦于技术带来的突破和便利,而对隐私保护、透明度、安全性等核心问题的关注却相对不足。长期来看,这些问题将深刻影响AI行业的健康发展和社会接受度。如果无法妥善解决,AI"向善"还是"向恶"的争议将愈发突出,而中心化巨头在逐利本能驱动下,往往缺乏足够的动力去主动应对这些挑战。

区块链技术凭借其去中心化、透明和抗审查的特性,为AI行业的可持续发展提供了新的可能性。目前,主流区块链上已经涌现出众多"Web3 AI"应用。但深入分析可以发现,这些项目仍存在诸多问题:一方面,去中心化程度有限,关键环节和基础设施仍依赖中心化云服务,难以支撑真正意义上的开放生态;另一方面,与Web2世界的AI产品相比,链上AI在模型能力、数据利用和应用场景等方面仍显局限,创新深度和广度有待提升。

要真正实现去中心化AI的愿景,使区块链能够安全、高效、民主地承载大规模AI应用,并在性能上与中心化方案相抗衡,我们需要设计一条专为AI量身打造的Layer1区块链。这将为AI的开放创新、治理民主和数据安全提供坚实基础,推动去中心化AI生态的繁荣发展。

Biteye与PANews联合发布AI Layer1研报:寻找链上DeAI的沃土

AI Layer 1 的核心特性

AI Layer 1作为一条专为AI应用量身定制的区块链,其底层架构和性能设计紧密围绕AI任务的需求,旨在高效支撑链上AI生态的可持续发展与繁荣。具体而言,AI Layer 1应具备以下核心能力:

  1. 高效的激励与去中心化共识机制 AI Layer 1的核心在于构建一个开放的算力、存储等资源的共享网络。与传统区块链节点主要聚焦于账本记账不同,AI Layer 1的节点需要承担更复杂的任务,不仅要提供算力、完成AI模型的训练与推理,还需贡献存储、数据、带宽等多样化资源,从而打破中心化巨头在AI基础设施上的垄断。这对底层共识和激励机制提出了更高要求:AI Layer 1必须能够准确评估、激励并验证节点在AI推理、训练等任务中的实际贡献,实现网络的安全性与资源的高效分配。唯有如此才能保证网络的稳定与繁荣,并有效降低整体算力成本。

  2. 卓越的高性能与异构任务支持能力 AI任务,尤其是LLM的训练与推理,对计算性能和并行处理能力提出了极高的要求。更进一步,链上AI生态往往还需支持多样化、异构的任务类型,包括不同模型结构、数据处理、推理、存储等多元场景。AI Layer 1必须在底层架构上针对高吞吐、低延迟和弹性并行等需求进行深度优化,并预设对异构计算资源的原生支持能力,确保各种AI任务都能高效运行,实现从"单一型任务"到"复杂多元生态"的平滑扩展。

  3. 可验证性与可信输出保障 AI Layer 1不仅要防止模型作恶、数据篡改等安全隐患,更要从底层机制上确保AI输出结果的可验证性和对齐性。通过集成可信执行环境(TEE)、零知识证明(ZK)、多方安全计算(MPC)等前沿技术,平台能够让每一次模型推理、训练和数据处理过程都可以被独立验证,确保AI系统的公正性和透明度。同时,这种可验证性还能帮助用户明确AI输出的逻辑和依据,实现"所得即所愿",提升用户对AI产品的信任和满意度。

  4. 数据隐私保护 AI应用经常涉及用户敏感数据,在金融、医疗、社交等领域,数据隐私保护尤为关键。AI Layer 1应在保障可验证性的同时,采用基于加密的数据处理技术、隐私计算协议和数据权限管理等手段,确保数据在推理、训练及存储等全过程中的安全性,有效防止数据泄露和滥用,消除用户在数据安全方面的后顾之忧。

  5. 强大的生态承载与开发支持能力 作为AI原生的Layer 1基础设施,平台不仅要具备技术上的领先性,还需为开发者、节点运营者、AI服务提供商等生态参与者提供完善的开发工具、集成SDK、运维支持和激励机制。通过持续优化平台可用性和开发者体验,促进丰富多元的AI原生应用落地,实现去中心化AI生态的持续繁荣。

基于以上背景与期望,本文将详细介绍包括 Sentient、Sahara AI、Ritual 、Gensyn、Bittensor以及 0G在内的六个AI Layer1 代表项目,系统梳理赛道的最新进展,剖析项目发展现状,并探讨未来趋势。

Biteye与PANews联合发布AI Layer1研报:寻找链上DeAI的沃土

Sentient:构建忠诚的开源去中心化AI模型

项目概述

Sentient 是一个开源协议平台,正在打造一条 AI Layer1 区块链(初始阶段为 Layer 2,之后将迁移至 Layer 1),通过结合 AI Pipeline 和区块链技术,构建去中心化的人工智能经济体。其核心目标是通过"OML"框架(开放、可盈利、忠诚)解决中心化 LLM 市场中的模型归属、调用追踪和价值分配问题,使 AI 模型实现链上所有权结构、调用透明化和价值分润化。Sentient 的愿景是让任何人都能够构建、协作、拥有并将 AI 产品货币化,从而推动一个公平、开放的 AI Agent 网络生态。

Sentient Foundation 团队汇聚了全球顶尖的学术专家、区块链创业者和工程师,致力于构建一个社区驱动、开源且可验证的 AGI 平台。核心成员包括普林斯顿大学教授 Pramod Viswanath 和印度科学研究所教授 Himanshu Tyagi,分别负责 AI 安全性与隐私保护,同时由 Polygon 联合创始人 Sandeep Nailwal 主导区块链战略与生态布局。团队成员背景横跨 Meta、Coinbase、Polygon 等知名企业,以及普林斯顿大学、印度理工学院等顶尖高校,覆盖 AI/ML、NLP、计算机视觉等领域,协力推动项目落地。

作为 Polygon 联合创始人 Sandeep Nailwal的二次创业项目,Sentient 在成立之初便自带光环,拥有丰富的资源、人脉和市场认知度,为项目发展提供了强大背书。2024 年中,Sentient 完成了 8500 万美元的种子轮融资,由 Founders Fund、Pantera 和 Framework Ventures 领投,其他投资机构包括 Delphi、Hashkey 和 Spartan 等数十家知名 VC。

Biteye与PANews联合发布AI Layer1研报:寻找链上DeAI的沃土

设计架构与应用层

基建层

核心架构

Sentient 的核心架构由 AI 管道(AI Pipeline) 和 区块链系统 两部分组成:

AI 管道是开发和训练"忠诚 AI"工件的基础,包含两个核心过程:​

  • 数据策划(Data Curation):由社区驱动的数据选择过程,用于模型的对齐。
  • 忠诚度训练(Loyalty Training):确保模型保持与社区意图一致的训练过程。

区块链系统为协议提供透明性和去中心化控制,确保 AI 工件的所有权、使用跟踪、收益分配与公平治理。具体架构分为四层:

  • 存储层:存储模型权重与指纹注册信息;
  • 分发层:授权合约控制模型调用入口;
  • 访问层:通过权限证明验证用户是否授权;
  • 激励层:收益路由合约将每次调用支付分配给训练者、部署者与验证者。

Biteye与PANews联合发布AI Layer1研报:寻找链上DeAI的沃土

OML 模型框架

OML 框架(开放 Open、可货币化 Monetizable、忠诚 Loyal)是 Sentient 提出的核心理念,旨在为开源 AI 模型提供明确的所有权保护和经济激励机制。通过结合链上技术和 AI 原生加密学,具有以下特点:

  • 开放性: 模型必须开源,代码和数据结构透明,便于社区复现、审计和改进。
  • 货币化: 每次模型调用都会触发收益流,链上合约会将收益分配给训练者、部署者和验证者。
  • 忠诚性: 模型归属于贡献者社区,升级方向和治理由 DAO 决定,使用和修改受到加密机制的控制。
AI 原生加密学(AI-native Cryptography)

AI原生加密是利用 AI 模型的连续性、低维流形结构与模型可微特性,开发出"可验证但不可移除"的轻量级安全机制。其核心技术是:

  • 指纹嵌入:在训练时插入一组隐蔽的 query-response 键值对形成模型唯一签名;
  • 所有权验证协议:通过第三方探测器(Prover)以 query 提问形式验证指纹是否保留;
  • 许可调用机制:调用前需获取模型所有者签发的"权限凭证",系统再据此授权模型对该输入解码并返回准确答案。

这种方式可在无重加密成本的情况下实现"基于行为的授权调用 + 所属验证"。

Biteye与PANews联合发布AI Layer1研报:寻找链上DeAI的沃土

模型确权与安全执行框架

Sentient 当前采用的即为 Melange混合安全:以指纹确权、TEE 执行、链上合约分润结合。其中指纹方法为 OML 1.0 实现主线,强调"乐观安全(Optimistic Security)"思想,即默认合规、违规后可检测并惩罚。

指纹机制 是 OML 的关键实现,它通过嵌入特定的"问题-回答"对,让模型在训练阶段生成独特的签名。通过这些签名,模型拥有者可以验证归属,防止未经授权的复制和商业化。该机制不仅保护了模型开发者的权益,还为模型的使用行为提供了可追踪的链上记录。

此外,Sentient 推出了 Enclave TEE 计算框架,利用可信执行环境(如 AWS Nitro Enclaves)确保模型只响应授权请求,防止未经许可的访问和使用。虽然 TEE 依赖硬件且存在一定安全隐患,但其高性能和实时性优势使其成为当前模型部署的

此页面可能包含第三方内容,仅供参考(非陈述/保证),不应被视为 Gate 认可其观点表述,也不得被视为财务或专业建议。详见声明
  • 赞赏
  • 5
  • 分享
评论
0/400
空投追逐者vip
· 6小时前
不看了 就冲ai概念干
回复0
空投自由人vip
· 6小时前
deai?ai 完蛋了吧
回复0
Token风暴眼vip
· 6小时前
大A都在演,现在入场就是被套死
回复0
WhaleMistakervip
· 6小时前
垄断是吧,早晚崩
回复0
MoonMathMagicvip
· 6小时前
Layer 1装得下ai的电吗
回复0
交易,随时随地
qrCode
扫码下载 Gate APP
社群列表
简体中文
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)