Web3与AI融合:构建下一代互联网基础设施的五大关键领域

Web3与AI的融合:构建下一代互联网基础设施

Web3作为一种去中心化、开放、透明的新型互联网范式,与AI有着天然的融合机会。传统的集中式架构下,AI计算和数据资源受到严格管控,存在算力瓶颈、隐私泄露、算法黑箱等诸多挑战。而Web3基于分布式技术,可以通过共享算力网络、开放数据市场、隐私计算等方式,为AI的发展注入新动力。同时,AI也能为Web3带来诸多赋能,如智能合约优化、反作弊算法等,助力其生态建设。探索Web3和AI的结合,对于构建下一代互联网基础设施、释放数据和算力价值至关重要。

数据驱动:AI与Web3的坚实基础

数据是驱动AI发展的核心动力,如同燃料之于引擎。AI模型需要消化海量高质量数据,才能获得深入理解和强大的推理能力。数据不仅为机器学习模型提供训练基础,还决定了模型的准确性和可靠性。

传统的中心化AI数据获取和利用模式存在以下几个主要问题:

  • 数据获取成本高昂,中小企业难以承担
  • 数据资源被科技巨头所垄断,形成数据孤岛
  • 个人数据隐私面临泄漏和滥用的风险

Web3能够以新的去中心化数据范式来解决传统模式的痛点:

  • 用户可以出售闲置网络给AI公司,去中心化地抓取网络数据,经过清理和转化,为AI模型训练提供真实、高质量的数据
  • 采用"label to earn"模式,通过代币激励全球工作者参与数据标注,汇聚全球的专业知识,增强数据的分析能力
  • 区块链数据交易平台为数据供需双方提供了一个公开透明的交易环境,激励数据的创新和共享

然而,真实世界的数据获取也存在一些问题,如数据质量不一、处理难度大、多样性和代表性不足等。合成数据可能是Web3数据赛道未来的明星。基于生成式AI技术和模拟,合成数据能够模拟真实数据的属性,作为真实数据的有效补充,提高数据使用效率。在自动驾驶、金融市场交易、游戏开发等领域,合成数据已经显示出其成熟的应用潜力。

隐私保护:FHE在Web3中的作用

数据驱动时代,隐私保护已成为全球关注的焦点,欧盟的通用数据保护条例(GDPR)等法规的出台,反映了对个人隐私的严格守护。然而,这也带来了挑战:一些敏感数据因隐私风险而无法被充分利用,这无疑限制了AI模型的潜能和推理能力。

FHE即全同态加密,允许在加密数据上直接进行计算操作,而无需对数据进行解密,且计算结果与在明文数据上进行相同计算的结果一致。

FHE为AI隐私计算提供了坚实的保护,使得GPU算力能够在不触及原始数据的环境中执行模型训练和推理任务。这为AI公司带来了巨大的优势。它们可以在保护商业机密的同时,安全地开放API服务。

FHEML支持在整个机器学习周期内对数据和模型进行加密处理,确保敏感信息的安全性,防止数据泄露风险。通过这种方式,FHEML强化了数据隐私,为AI应用提供了一个安全的计算框架。

FHEML是ZKML的补充,ZKML证明机器学习的正确执行,而FHEML则强调对加密数据进行计算以维护数据隐私。

算力革命:去中心化网络中的AI计算

当前AI系统的计算复杂性每3个月翻一番,导致算力需求激增,远超现有计算资源的供应。例如,某大型语言模型的训练需要巨大算力,相当于单个设备上355年的训练时间。这样的算力短缺不仅限制了AI技术的进步,更让那些高级的AI模型对于大多数研究者和开发者来说变得遥不可及。

同时,全球GPU的利用率不足40%,加之微处理器性能提升的放缓,以及供应链和地缘政治因素导致的芯片短缺,这些都让算力供应问题变得更加严重。AI从业者们陷入了两难:要么自购硬件,要么租赁云资源,他们急需一种按需、经济高效的计算服务方式。

去中心化AI算力网络通过聚合全球范围内的闲置GPU资源,为AI公司提供了一个既经济又易于访问的算力市场。算力需求方可在网络上发布计算任务,智能合约将任务分配给贡献算力的矿工节点,矿工执行任务并提交结果,经验证后获得积分奖励。这种方案提高资源利用效率,有助于解决AI等领域的算力瓶颈问题。

除了通用的去中心化算力网络,还有专注于AI训练的平台,以及专注于AI推理的专用算力网络。

去中心化算力网络提供公平透明的算力市场,打破垄断,降低了应用门槛,提高了算力的利用效率。在web3生态系统中,去中心化算力网络将发挥关键作用,吸引更多创新型dapp的加入,共同推动AI技术的发展和应用。

DePIN:Web3赋能Edge AI

Edge AI让计算发生在数据产生的源头,实现了低延迟、实时处理,同时保护了用户的隐私,Edge AI技术已经应用于自动驾驶等关键领域。

在Web3领域,我们有个更熟悉的名字---DePIN。Web3强调去中心化和用户数据的主权,DePIN通过在本地处理数据,可以增强用户隐私保护,减少数据泄露的风险;Web3原生的Token经济机制可激励DePIN节点提供计算资源,构建一个可持续的生态系统。

目前DePIN在某高性能公链生态中发展迅速,成为项目部署的首选公链平台之一。该公链的高TPS、低交易费用以及技术创新为DePIN项目提供了强大支持。目前,该公链上的DePIN项目市值超过100亿美元,多个知名项目已取得显著进展。

IMO:AI模型发布新范式

IMO的概念由某协议首先提出,将AI模型代币化。

在传统模式下,由于收益分享机制缺失,一旦AI模型被开发出来并投入市场,开发者往往难以从模型的后续使用中获得持续的收益,尤其是当模型被整合进其他产品和服务后,原始创造者很难追踪使用情况,更不用说从中获得收益了。并且AI模型的性能和效果往往缺乏透明度,这让潜在的投资者和使用者难以评估其真正价值,限制了模型的市场认可和商业潜力。

IMO为开源AI模型提供了一种全新的资金支持和价值共享方式,投资者可以购买IMO代币,分享模型后续产生的收益。某协议使用两个ERC标准,结合AI预言机和OPML技术来确保AI模型的真实性和代币持有者能够分享收益。

IMO模式增强了透明度和信任,鼓励开源协作,适应加密市场趋势,并为AI技术的可持续发展注入了动力。IMO目前还处于初期尝试阶段,但随着市场接受度的提升和参与范围的扩大,它的创新性和潜在价值值得我们期待。

AI Agent:交互体验的新纪元

AI Agent能够感知环境,进行独立思考,并采取相应的行动以实现既定目标。在大语言模型的支持下,AI Agent不仅能理解自然语言,还能规划决策,执行复杂的任务。它们可以作为虚拟助手,通过与用户的互动学习其偏好,并提供个性化的解决方案。在没有明确指令的情况下,AI Agent也能自主解决问题,提高效率,创造新价值。

某开放的AI原生应用平台提供全面易用的创作工具集,支持用户配置机器人功能、外观、声音以及连接外部知识库等,致力于打造公平开放的AI内容生态系统,利用生成式AI技术,赋能个人成为超级创作者。该平台训练了专门的大语言模型,使角色扮演更人性化;语音克隆技术可以加速AI产品个性化交互,把语音合成成本降低99%,语音克隆仅需1分钟即可实现。利用该平台定制的AI Agent,目前可应用于视频聊天、语言学习、图像生成等多领域。

在Web3与AI的融合上,当前更多的是对基础设施层的探索,如何获取高质量数据、保护数据隐私,如何在链上托管模型,如何提高去中心化算力的高效使用,如何验证大语言模型等关键问题。随着这些基础设施的逐步完善,我们有理由相信,Web3与AI的融合将孕育出一系列创新的商业模式和服务。

此页面可能包含第三方内容,仅供参考(非陈述/保证),不应被视为 Gate 认可其观点表述,也不得被视为财务或专业建议。详见声明
  • 赞赏
  • 7
  • 分享
评论
0/400
Vibes Over Chartsvip
· 21小时前
又来炒Web3的饼 坐等崩盘
回复0
单身三年多vip
· 23小时前
纯干货 很需要!
回复0
GateUser-2fce706cvip
· 07-04 11:27
在我说的吧 下一波财富密码就在ai x web3赛道 先手必胜 大势所趋!
回复0
RunWithRugsvip
· 07-01 16:48
ai炒作咯 等着爆仓吧
回复0
Crypto历史课vip
· 07-01 16:48
*查看历史图表* 嗯,给我一种2005年左右web1到web2的热潮氛围...
查看原文回复0
偏执之王vip
· 07-01 16:42
这谁写的 一句没懂
回复0
资深空投收割机vip
· 07-01 16:26
呜呜 希望空投多一点
回复0
交易,随时随地
qrCode
扫码下载 Gate APP
社群列表
简体中文
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)